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The Small Parsimony Problem (SPP) aims at finding the gene orders at internal nodes
of a given phylogenetic tree such that the overall genome rearrangement distance along

the tree branches is minimized. This problem is intractable in most genome rearrange-

ment models, especially when gene duplication and loss are considered. In this work, we
describe an Integer Linear Program algorithm to solve the SPP for natural genomes,

i.e., genomes that contain conserved, unique, and duplicated markers. The evolutionary

model that we consider is the DCJ-indel model that includes the Double-Cut and Join
rearrangement operation and the insertion and deletion of genome segments. We evaluate

our algorithm on simulated data and show that it is able to reconstruct very efficiently
and accurately ancestral gene orders in a very comprehensive evolutionary model.
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1. Introduction

Methods for ancestral genome reconstruction, such as those used in evolutionary

genomics34,27,26,28 and genome assembly37,3, take as input a phylogenetic tree (a

species tree) together with gene orders for extant species and aim at computing the

gene orders at the internal nodes of the tree, i.e., ancestral species, while optimizing

a suitable criterion.

Approaches designed to reconstruct ancestral gene orders can be widely divided

into two types: homology-based and parsimony-based. The former rely on the use of

conserved genomic features, such as gene adjacencies or common intervals, associ-

ated to specific internal nodes of the species tree and obtained by the comparison of

the extant gene orders6. Subsequently, these genomic features can then be assembled

into larger linear or circular gene orders for the considered ancestral species, often

called Contiguous Ancestral Regions (CARs)23,13. Conversely, parsimony-based ap-

proaches are guided by the principle of minimizing the evolutionary cost, in a given

genome rearrangement model, along the branches of the considered species tree.

This approach builds upon many tractability results on the pairwise genome re-

arrangement distance problem18 and the corresponding computational problem is

known as the Small Parsimony Problem (SPP). However, even when restricted to

1
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the genome median problem, the SPP has been proved to be NP-hard for most

genome rearrangement models29,11,36,20. The only strong tractability result for the

SPP has been obtained in the Single-Cut-or-Join (SCJ) model17,21.

Most methods discussed above consider gene orders with no duplicated genes.

However gene duplication and loss play an important role in genome evolution. In

most cases, computing the pairwise distance between genomes with duplicates is

hard8,2 and there are very few exact polynomial-time algorithms for reconstruct-

ing ancestral gene orders in a framework including gene duplication and loss. The

first work toward this goal was due to Sankoff and El-Mabrouk31 (see also12), who

introduced the idea of using reconciled gene trees to define the gene content of an-

cestral genomes and orthology relations between genes. This idea was later used

in the homology-based method DUPCAR22 that requires however a dated species

tree to order gene duplication events, and the DeCoSTAR method that does not re-

quire dated gene trees15,3. Other methods accounting for gene duplication and loss

include16, GapAdj19 that assumes that gene duplications originate from Whole-

Genome Duplications (WGD), PMAG++39,40, and the homology-based method

MULTIRES30 that requires a preliminary set of CARs as well as an upper bound

on the number of duplications per gene. Recently, it was shown that the problem of

computing the pairwise distance in a model including SCJ and single-gene duplica-

tions is tractable25 and that the SPP in this moel can be solved by a simple Integer

Linear Program (ILP); however, results on simulated data showed that considering

only single-gene events leads to inaccurate reconstructed ancestral gene orders24.

Recently, fast ILP-based method were developed for computing the pairwise

distance between gene orders with duplicates, especially in genome rearrangement

models based on the Double-Cut and Join (DCJ) operation38,7. ILP-based methods

for the pairwise distance with duplicated genes can be traced back to the work

of Shao et al. 32. The most recent advance is due to Bohnenkämper et al. 9, who

designed an extremely efficient ILP for computing the pairwise distance in the

DCJ-indel model, that allows arbitrary gene orders and considers DCJ for genome

rearrangement operations, and the insertion and deletion of segments of consecutive

genes for duplications and losses. In our work, we extend the method introduced

in9 to SPP. We also formulate the problem of linearizing degenerate genomes that

connects to that of linearizing ancestral circular chromosomes5,4.

We first describe the general workflow of ancestral gene order reconstruction and

background on the DCJ-indel distance (Section 2), followed by our SPP algorithm

(Section 3) before providing results on simulated data (Section 4), that show that

our algorithm is able to recover efficiently and accurately ancestral gene orders even

in the presence of a high level of noise in the input data.

2. Background

Overview. The parsimony-based ancestral reconstruction approach to which our

work contributes aims at inferring gene order sequences for internal nodes of a given
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rooted species phylogeny based on extant gene orders placed at its tips.

From now on, we will refer to gene orders of a species as its genome. In this

work, we follow the ancestral genome reconstruction framework that was described

in12 and consists in five successive steps, as illustrated in Figure 1a: (1) Using

the underlying DNA or protein sequences of the genomic markers, gene trees are

predicted; (2) These are subsequently reconciled with the species tree. Note that at

this point of the workflow, the marker content of the ancestral genomes subject to

reconstruction is determined; (3) Reconciled gene trees are then used to infer the

evolutionary history of neighborhood relations of adjacent markers, also known as

adjacencies, using the DeCoSTAR algorithm15. This provides weighted candidate

ancestral adjacencies, where the weight is considered as a measure of confidence.

(4) From the candidate ancestral adjacencies forests, ancestral genomes can be

derived. However, candidate ancestral adjacencies may conflict, resulting in some

ancestral markers being involved in two or more contradictory adjacencies35. We

call a genome degenerate if its chromosomes are linear, circular, or neither. That

is, an ancestral degenerate genome represents a superposition of a set of ancestral

genome candidates; (5) As the last step of the reconstruction workflow, ancestral

genomes are derived from their degenerate counterparts, based on an optimization

criterion that considers jointly parsimony in an evolutionary model and adjacency

weights. In the following, we present a method that addresses step (5).

Preliminaries. A (genomic) marker g := {gt, gh} is an element of the universe

of markers, denoted by M, defined as a pair of extremities gt (“tail of g”) and

gh (“head of g”); markers corresponds to genome segments (genes, synteny blocks,

. . . ). In what follows we assume that in a gene order, defined as a total order on

marker extremities, the two extremities of a marker are always consecutive, i.e.,

markers do not overlap. Assuming the doubled stranded nature of DNA, the order

of the extremities of a marker encode the strand in which a marker is located: if

the tail occurs before the head the marker is assumed to be on the positive strand,

and on the negative strand otherwise. Telomeres T ⊂ M form a special subset of

markers composed of a single extremity, i.e., t := {t◦} for all t ∈ T ; intuitively both

the tail and the head are confounded and telomeres are not associated to a specific

strand.

Let
⋃

be the operator that takes the union of a collection of sets, i.e.,
⋃
X :=

∪X∈X X. We denote the universe of (marker) extremities
⋃
M by E . Furthermore,

we use a function e : E → {t,h, ◦} to map extremities to their corresponding kind

(tail, head or telomere).

An adjacency is an unordered pair of extremities {ε, ε′} ∈ E×E such that ε 6= ε′.

A genome A is a set of uniqueb adjacencies for which holds true that (i) ∀gt ∈
⋃
A,

there exists also extremity gh ∈
⋃
A and vice versa, and (ii) each extremity is used

only once, i.e., ∀{X,X ′} ⊆ A, X ∩X ′ = ∅. As a consequence of (ii), it is implicit

aAll figures are available in Appendix.
bNo two genomes contain the same marker and hence the same adjacency.
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that the markers of a genome can be ordered in linear and circular segments where

the tail and head of any marker are consecutive.

Comparing genomes benefits from the knowledge of evolutionary relationships

between non-telomeric markers. Typically, non-telomeric markers are clustered into

families based on homology or orthology, indicating a likely common evolutionary

origin from an ancestral marker. We model family assignments of marker extremities

as a function f : E \ T → N for which holds true that for any marker g = {gt, gh},
f(gt) = f(gh). Function mA(ε) := |{ε′ ∈

⋃
A | f(ε) = f(ε′) and e(ε) = e(ε′)}|

indicates the multiplicity of an extremity’s family in a given genome A, defined as

the number of extremities of same kind that belong to the same family in A. A family

assignment f ′ is f -derived if there exists no two extremities ε, ε′ with f ′(ε) = f ′(ε′)

and f(ε) 6= f(ε′). A family assignment f is termed A-resolved (or simply resolved if

the context is clear) if for each member A of a set of genomes A, each extremity

ε ∈ E \ T has a multiplicity not higher than 1, i.e., mA(ε) ≤ 1.

Genome rearrangement model. A Double-Cut-and-Join (DCJ) operation pro-

duces a new genome A′ from a given genome A by either acting on a single adja-

cency or a pair of adjacencies. In the former case, telomeric adjacencies are created

by “splitting up” a given adjacency X = {a1, a2}, X ∈ A and replacing it with

a new pair of telomeric adjacencies, i.e., A′ = A \ {X} ∪ {{a1, t}, {a2, t
′}}, with

{t, t′} ⊆ T . In the latter case, the DCJ operation acts on a given a pair of adjacen-

cies X = {a1, a2}, Y = {b1, b2}, {X,Y } ⊆ A, as follows:

• A′ = A \ {X,Y } ∪ {{a1, b1}, {a2, b2}}, or

• A′ = A \ {X,Y } ∪ {{a1, b2}, {a2, b1}}, or

• {a1, b1} ⊆ T ⇒ A′ = A \ {X,Y } ∪ {{a2, b2}} (telomeres {a1, b1} are re-

moved).

An indel operation either inserts or deletes a continuous segment of non-

telomeric markers of a chromosome, or an entire linear or circular chromosome.

The unrestricted use of indels results in solutions to the rearrangement problem,

where indels of entire chromosomes dominate the rearrangement scenario. Such bio-

logically irrelevant solutions are prohibited by restricting the removal and insertion

of non-telomeric markers to the minimal number that is needed so that the mul-

tiplicity of each marker family in one genome equals that of the other. In other

words, we do not allow any intermediate genome to have less markers of a family

than the minimum of the multiplicity of this marker in both input genomes. This

restriction, also called maximum matching model, prevails for the remainder of this

paper.

Distance calculation. For two genomes A,B and an {A,B}-resolved family

assignment f , the DCJ indel distance is defined as dDCJ−ID(A,B) := d, were d is

the minimum number of DCJ/indel operations ∆i in any rearrangement scenario

A
∆1−−→ A1

∆2−−→ A2 · · ·Ad−1
∆d−−→ B that transforms A into B.

Problem 1 (DCJ indel distance10). Given two genomes A,B and an {A,B}-
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resolved family assignment f , calculate the DCJ indel distance dDCJ−ID(A,B).

In the following, we briefly outline a solution to Problem 1 introduced in10. It

is convenient to make use of a graph structure to calculate the DCJ-indel distance.

The relational diagram R(A,B, f) of two genomes A and B and {A,B}-resolved

family assignment f is a multigraph G = (V AB , EAB) with nodes V AB = V A ∪V B
representing marker extremities of genomes A and B. The graph G has three types

of edges: (i) adjacency edges EABadj = EAadj ∪ EBadj, corresponding to the adjacencies

of A and B, (ii) extremity edges EABext , that connect marker extremities between

the two genomes according to {A,B}-resolved family assignment f , and (iii) indel

edges EABid = EAid ∪EBid, each of which connects the extremities of a marker that is

removed or inserted in the respective genome (see Figure 2 for an illustration).

Note that under the maximum matching model, the {A,B}-resolved family as-

signment f dictates which marker is removed or inserted, that is, EAid = {{gt, gh} ⊆⋃
A | mB(gt) < 1}, and EBid = {{gt, gh} ⊆

⋃
B | mA(gt) < 1}. Subsequently,

we denote by n the number of non-telomeric markers of one genome that are not

inserted or deleted, which is identical for both genomes A and B:

n :=
1

2
|{ε ∈

⋃
A \ T |mB(ε) = 1}| =

1

2
|{ε ∈

⋃
B \ T |mA(ε) = 1}|

Each node in V AB has degree one or two, so the connected components of the

graph constitute alternating paths and cycles and each node corresponding to a

non-telomeric marker extremity is incident to one adjacency edge and either one

extremity or one indel edge. Telomeric extremity nodes have degree one and are

incident to an adjacency edge.

The DCJ-indel distance, given by dDCJ−ID(A,B) = n−c− i
2 +δ, grows inversely

to the number c of cycles and twice the number i of paths of odd length in G7,10,

where δ denotes the indel penalty, that is, the number of indel operations required

to transform A into B. The maximal contribution of a connected component of

the relational diagram to the indel penalty, the indel potential, is quantified based

on the concept of runs: an A-run is a maximal sequence of indel edges of genome

A (e1, . . . , el), with e1, . . . , el ∈ EAid, that lies on a connected component of graph

G, that does not pass over an indel edge of genome B. Analogously, a B-run is a

maximal sequence of indel edges of genome B that does not pass over an indel edge

of genome A. For a given connected component C ∈ G, let Λ(C) denote the number

of runs it contains; the indel-potential of C is then given by

λ(C) =

0 if Λ(C) = 0 and⌈
Λ(C)+1

2

⌉
otherwise.

The sum of indel potentials of all connected components of graph G serves as an

upper bound of indel penalty δ: δ ≤
∑
C∈G λ(C).

The calculation of the exact indel penalty must take into account further DCJ-

induced recombinations of connected components that reduce the number of nec-

essary indel operations by merging successive runs. Braga et al. show that only
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recombinations of those connected components that are paths lead to optimal re-

arrangement scenarios. There are 32 groups of path recombinations that can be

further classified into five categories with varying negative contributions to the in-

del potential of its recombinants. Further details can be found in10. With the help

of tabulation, the indel penalty—and thus the DCJ indel distance—of two genomes

under a resolved family assignment can be calculated in linear time10.

Bohnenkämper et al. describe an alternative approach to calculate the indel

penalty that makes use of a technique called capping33, where paths are assembled

into alternating cycles that correspond to optimal path recombinations. This re-

quires the extension of the relational diagram to a capped multi-relational diagram

MR◦(A,B, f)9 in which node degree is no longer restricted to one and two. In fact,

in a capped multi-relational diagram, each node has degree two or higher.

To calculate the indel penalty in the above-described setting, we construct the

capped multi-relational diagram H from the existing relational diagram G, i.e,

H ← G. Then, if genomes A and B have unequal numbers of telomeres, additional

nodes and edges corresponding to telomeric adjacencies are added to the graph and

are associated with the genome that has fewer telomeres. Without loss of generality,

let A be the genome with the lower number of telomeres and τ := |
⋃
B ∩ T | −

|
⋃
A ∩ T |. Note that as a result of the genome constraints, τ is even. Then τ

new telomeric extremities {ε1, . . . , ετ} ⊆ T are added to VA(H). The newly added

nodes are pairwise connected by adjacency edges {ε2i−1, ε2i}, 1 ≤ i ≤ τ
2 , and

associated with edge set EAadj(H). Second, additional extremity edges are added to

edge set EABext (H), corresponding to the Cartesian product of telomeric extremities

(
⋃
A∩T )×(

⋃
B∩T ) =: T . The indel penalty δ is determined by finding a subset of

extremity edges T ′ ⊂ T in H corresponding to a perfect matching between telomeric

nodes V A(H) ∩ T and V B(H) ∩ T such that the sum of indel potentials of all

connected components of the graph is minimized. Observe that any perfect matching

T ′ ⊂ T decomposes the graph into alternating cycles, thereby transforming H into

a capped relational diagram R◦(A,B, f).

If such constructed capped relational diagram G◦ is given, the DCJ-indel dis-

tance can be expressed in terms of connected components and their indel potentials:

dDCJ−ID(A,B) = n′ −
∑
C∈G◦

1− 1EAB
ext (C)=∅ − λ(C) , (1)

where 1 denotes the indicator function and n′ = n+ V AB(H)∩T
4 .

Cycles that do not contain any extremity edgec correspond to circular chro-

mosomes that are entirely inserted or deleted in the rearrangement scenario be-

tween the two genomes. These connnected components of the relational diagram

are termed circular singletons and differ from extremity-edge enclosing cycles in

that their presence does not contribute to the count of cycles that reduces the

distance but only increases the indel penalty.

cNote that the number of extremity edges in a cycle of a relational diagram is even.
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Bohnenkämper et al. indirectly quantify the indel potential by count-

ing transitions between runs of a connected component: For a given con-

nected component C of the capped relational diagram, a transition is a path

{ε1, ε2}, {ε2, ε3}, . . . , {εl−1, εl} ∈ EABadj (C)∪EABext (C) such that their adjacent edges

are indel edges of two different runs, i.e., without loss of generality {ε0, ε1} ∈ EAid
and {εl, εl+1} ∈ EBid(C). To count transitions, one of the edges of the transition

is designated as transition edge, which we here arbitrarily define as edge {ε1, ε2}.
Note that by construction, {ε1, ε2} must be part of the edge set EAadj. With that,

the DCJ-indel distance can be separated into four terms

dDCJ−ID(A,B) = n′ −
∑
C∈G◦

1EAB
id (C)=∅ +

1

2

∑
e∈EA

adj(G◦)

1e is transition edge +
∑
C∈G◦

1EAB
ext (C)=∅ .

We refer to Figure 2 for an illustration.

3. Methods

The small parsimony problem for degenerate genomes. A degenerate genome is a set

of unique adjacencies A that satisfies the following conditions: (i) ∀gt ∈
⋃
A, there

exists also extremity gh ∈
⋃
A and vice versa, and (ii) each telomeric extremity

is used only once: ∀{X,X ′} ⊆ A, X ∩ X ′ ∩ T = ∅. Note that a genome is also a

degenerate genome, but the reverse does not hold true in general. The surfeit of a

degenerate genome A is the ratio 2·|A|
|
⋃
A\T | .

Example 1. Consider adjacency sets A = {{1t
A, 2

t
A}, {1h

A, 2
h
A}}, B = {{1h

B , 2
h
B},

{1h
B , 3

h
B}, {2h

B , 3
h
B}, {1t

B , 2
t
B}, {1t

B , 3
t
B}, {2t

B , 3
t
B}}, C = {{1t

C , 2
t
C}, {1h

C , 2
h
C}, {1t

C ,

2h
C}, {1h

C , 2
t
C}, {t.1◦C , 2t

C}, {t.2◦C , 1h
C}, {t.3◦C , 2h

C}}}, as illustrated in Figure 3. All

three are degenerate genomes, but only A is a genome. Their surfeits are 1.0 and

2.0, and 3.5, respectively.

A genome A′ is A-derived from degenerate genome A (or simply “derived from

A”) if A′ ⊆ A and
⋃
A′ \ T =

⋃
A \ T . Conversely, a degenerate genome A is

linearizable if there exists an A-derived genome. In fact, many degenerate genomes

are not linearizable.

Example 1 (cont’d). Degenerate genome B is not linearizable. Degener-

ate genome C is linearizable, and {{1t
C , 2

t
C}, {1h

C , 2
h
C}}, {{1t

C , 2
h
C}, {1t

C , 2
h
C}},

{{1t
C , 2

t
C}, {t.2◦C , 1h

C}, {t.3◦C , 2h
C}}, {{1t

C , 2
h
C}, {t.1◦C , 2t

C}, {t.2◦C , 1h
C}} are all C-

derived genomes.

Ensuring linearizability of degenerate genomes. The ancestral adjacencies that

DeCoSTAR infers in the third step of the ancestral reconstruction workflow do

not guarantee that the resulting degenerate genomes are linearizable. Whether a

polynomial algorithm exists that can test whether a given degenerate genome A is

linearizable is an open question. Therefore, to ensure linearizability, we augment de-

generate genomes with additional telomeric adjacencies. That is, for a non-telomeric



July 16, 2021 11:53 WSPC/INSTRUCTION FILE output

8 Daniel Doerr and Cedric Chauve

extremity ε ∈
⋃
A∩T of a degenerate genome A such that ε is not already involved

in an adjacency with a telomeric extremity, we add a new telomeric adjacency

{ε, tε}, tε ∈ T , to A and assign it weight 0. From this procedure parts of the de-

generate genome are omitted that are linearizable. To this end, we study connected

components of the graph GA = (V,E) where V =
⋃
A and E = A. Nodes of a con-

nected component C ∈ GA do not need to be augmented with telomeric adjacencies

if |C| is even and C is a cycle, a path, or fully connected.

The small parsimony problem for degenerate genomes. In the following, we

study a variant of Problem 1 in which linearizable degenerate genomes and an un-

resolved family assignment are given with the objective to derive genomes and a

resolved family assignment that minimize the DCJ indel distance. For a given pair

of linearizable degenerate genomes, often multiple solutions to the DCJ indel dis-

tance problem exist. That is, different choices of derived genomes, resolved family

assignments, as well as rearrangement scenarios lead to the same optimal DCJ indel

distance. The solution space increases with the surfeit of the degenerate genomes

as well as the multiplicity of marker extremities under the given unresolved family

assignment. At the same time, solutions based on derived genomes that contain

excessive numbers of linear chromosomes are not likely to occur in the biological

realm. To reduce the solution space as well as to ameliorate biological interpretabil-

ity, we aim to find resolved genomes with fewer linear chromosomes even if that

comes at the expense of an increased DCJ indel distance. At last, we want to fa-

cilitate the consideration of prior knowledge about presence or absence of certain

adjacencies in degenerate genomes, if such is available:

Problem 2 (Weighted Degenerate DCJ indel distance). Given a weighting

scheme w : E ×E → R, some α, β ∈ [0, 1], two linearizable degenerate genomes A,B

and family assignment f , find A-derived genome A′, B-derived genome B′, and f -

derived {A′, B′}-resolved family assignment f ′ that minimize the linear combination

(1− α− β) ·
∑

X∈A′∪B′
−w(X) + α · dDCJ−ID(A′, B′) + β · |(

⋃
A′ ∪

⋃
B′) ∩ T | .

Because the surfeit of a derived genome only depends on the number of its

telomeres, minimizing its number of telomeres is equivalent to minimizing its surfeit.

In this work, we study the following generalization of Problem 2 that represents a

variant of the small parsimony problem (SPP) under the weighted degenerate DCJ

indel distance. To this end, we make use of an additional graph that establishes

relationships between a given set of genomes A = A1, . . . , Ak and that we call

“phylogeny”. A phylogeny Γ is a connected graph with nodes V (Γ) = A. Nodes

L ⊆ V (Γ) of degree 1 are termed leaves.

Problem 3 (SPP-DCJ). Given a phylogeny Γ and a set of linearizable degener-

ate genomes A1, . . . , Ak corresponding to the node set V (Γ) = {A1, . . . , Ak}, find

genomes A′1 ⊆ A1, . . . , A
′
k ⊆ Ak that minimize the sum of weighted degenerate DCJ

indel distances along the edges of Γ.
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Finding solutions to SPP-DCJ. Our solution to SPP-DCJ makes use of the

capped multi-relational diagram as introduced in9, subsequently simply denoted by

multi-relational diagram. The multi-relational diagram represents a superposition of

capped relational diagrams of all possible derived genomes of degenerate genomes A

and B. For each edge {A,B} of a given phylogeny Γ and a given family assignment

f , we construct multi-relational diagram (V AB , EAB) = MR◦(A,B, f). Our method

for solving Problem 3 is an extension of DING9 and is formulated as an ILP. The key

idea of this ILP is to simultaneously calculate solutions to Problem 2 for each pair

of genomes {A,B} ∈ E(Γ) and family assignment f while maintaining consistency

in the selection of adjacencies of each derived genome among all solutions. But

rather than minimizing the sum of objectives specified in Problem 2, the algorithm

solves the inverse maximization problem. A solution is encoded as capped relational

diagram R◦(A
′, B′, f ′) and represents A-derived genome A′, B-derived genome B′

and f -derived {A,B}-resolved family assignment f ′. Details of our algorithm can

be found in Appendix Appendix B.

Identifying candidates of circular singletons. For the construction of the ILP

described in Algorithm 1 the set of circular singleton candidates CAB , {A,B} ∈
E(Γ) must be known. The number of candidates depends heavily on the surfeit of

degenerate genomes A and B and is bounded by the number of ordered partitions

of edge set EAid and EBid, respectively. These numbers are also known as ordered

Bell numbers. In practice, the size of CAB is small, because degenerate genomes

have typically low surfeit. We construct the set of circular singleton candidates by

traversing the multi-relational diagram, thereby identifying alternating cycles of

adjacency and indel edges.

Reducing the search space of optimal path recombinations. A substantial factor

that impacts the running time are large marker families and the number telomeres

in degenerate genomes9. Large numbers of telomeres act similarly to large marker

families, as in the capping strategy used in the construction of the multi-relational

diagram MR◦(A,B, f) extremity edges are drawn between all telomeric extremi-

ties of the degenerate genomes A and B. This is to include path recombinations

in the optimization that may further minimize the DCJ-indel distance. If path re-

combinations can be determined beforehand, then the search space of optimal path

recombinations can be reduced by omitting non-optimal recombinations. However,

paths used in the solution of SPP-DCJ are often unknown, as they depend on the

choice of indel and extremity edges. Still, for any two telomeres, it is possible to

identify the subgraph that spans all possible alternating paths that connect them.

We then use these subgraphs to classify the telomere pairs into two groups: those,

contained in indel-free subgraphs, and those, contained in indel-enclosing subgraphs.

As the former group does not contribute to the indel-penalty, the optimization of

their recombinations will maximize the count of indel-free cycles. Conversely, the

optimization of indel-enclosing cycles does not affect that count, but will only re-

duce the indel-penalty. So path recombinations within the two classes of telomeres
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can be optimized independently.

We identify the class membership of telomeres using a depth-first search (DFS)

strategy, which, for a given telomere t ∈ V AB , simultaneously identifies all possible

telomeres that can be recombination partners of t. While traversing the graph to

find these partners, we also record the occurrence of indel edges. The procedure is re-

peated for all telomeres. Overall, the classification completes in O(|V AB∩T |·|EAB |)
time. Identified indel-free recombination paths of telomeric extremities from oppo-

site genomes can be directly connected by an extremity edge. However, indel-free

paths between telomeres of the same genome and indel-enclosing path combinations

of opposite genomes are connected by extremity edges in an all-vs-all manner. If the

latter group has an unequal number of telomeres in A and B, additional telomeres

are added, as described above in the construction of the multi-relational diagram.

4. Results

We implemented a Python program that constructs the ILP of Algorithm 1 for

a given input data set. The source and instructions for its usage is available at

https://github.com/danydoerr/spp_dcj. The ILP is solved with Gurobi1.

We evaluated our method on simulated data of moderate scale, using a phylogeny

with 10 extant and 9 ancestral genomes. The genomes and their reconciled gene trees

were generated with the genome evolution simulator ZOMBI14. ZOMBI simulates

intra-chromosomal evolution and supports a variety of evolutionary events, includ-

ing inversions, transpositions, segmental duplications, and segmental deletions. To

generate the data sets, we gradually increased the evolutionary scale (number of

expected events per branch of the phylogenetic tree), thus creating series of data

sets with increasing numbers of evolutionary events. We generated 80 data sets with

varying numbers of above-mentioned events. Tables 1 and 2 in the Appendix display

these numbers for two representative series of data sets.

Each simulated genome is associated with a node of the phylogeny and corre-

sponds to a single circular chromosome comprised of ca. 1,000 markers, the exact

number depending on the rate of gene duplication and loss used in the simulation.

We conducted three different experiments, each introducing a different type of noise

in the data used as input to the ancestral genome reconstruction workflow. In all

these experiments, we used the true reconciled gene trees in the input data. The

rationale to rely on true reconciled gene trees is to avoid conflating the analysis

of the SPP algorithm by factors that are external and therefore unrelated to the

ILP when assessing its quality of reconstruction. We discuss this aspect further in

conclusion. At last, we set α = 1
2 and β = 1

4 for calculating the weighted degenerate

DCJ-indel distance in all experiments.

Random Noise. In the first experiment, we tested our method for susceptibil-

ity of biased and unbiased noise: We generated ancestral degenerate genomes by

augmenting the true ancestral genomes of our simulated data sets with random

ancestral adjacencies of two kinds: uniform random adjacencies, sampled uniformly
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from the space of all possible adjacencies of a genome, and adversarial random ad-

jacencies formed between extremities of pairs of genes whose families already form

adjacencies in the parental degenerate genome. Adversarial adjacencies are particu-

larly detrimental to parsimony-based reconstruction as they are natural candidates

to be conserved along a branch of the phylogeny. Altogether, we generated three

batches, each comprising 480 data sets, with 0%, 50%, and 100% of the added ran-

dom adjacencies being adversarial. Within each batch, we modulated the surfeits

of the degenerate ancestral genomes within the range of 1.2 to 3 by adding varying

numbers of random adjacencies. In that experiment all adjacencies received weight

1.

Except for 26 data sets, SPP-DCJ perfectly recovered the true adjacencies in

all three batches. Of the data sets with incorrectly reconstructed adjacencies, 1 oc-

curred in a data set whose degenerate genomes had surfeit 2, while the remaining

had surfeit 3. Still, SPP-DCJ erred only on very few adjacencies, scoring after all

99.999% and 99.7% in mean precision and recall, respectively. This baseline exper-

iment shows that a parsimony approach in the evolutionary model implemented in

SPP-DCJ is able to recover the true evolutionary signal even in the presence of sig-

nificant levels of noise, including adversarial noise explicitly designed at simulating

parsimonious evolution of false positive adjacencies.

Principled Noise. In our second set of experiments, we reconstructed ancestral

genomes based again on including the true ancestral adjacencies in the ancestral

degenerate genomes, but augmented by adjacencies recovered by DeCoSTAR15. We

used DeCoSTAR on the true reconciled gene trees and subsequently derived an-

cestral adjacencies from the returned adjacency evolution forests. This experiment

thus includes a crucial step of the ancestral reconstruction workflow described in

Figure 1, that is the inference of ancestral adjacencies based on local parsimony

(at the level of pairs of gene families) that is more likely to generate false positive

adjacencies (see35 for similar experiments with this framework), although keeping

the true adjacencies in the input too. In the calculation of the weighted degenerate

DCJ-indel distance we weighted true adjacencies by one and DeCoSTAR adjacen-

cies by its own assigned weights. In 78 out of 80 experiments, SPP-DCJ obtained

a perfect score in recovering the true adjacencies. In the remaining two experi-

ments, 2 (resp. 4) adjacencies were incorrectly selected by SPP-DCJ. This indicates

that in rare cases, DeCoSTAR introduces bias that negatively impacts the accurate

reconstruction of ancestral gene orders.

DeCoSTAR Reconstruction. In the last experiment we scrutinize the second

part of the reconstruction workflow by performing the last three out of five steps

(see Figure 1) as if the underlying data were not simulated, but represented actual

biological data. In other words, we applied SPP-DCJ only on adjacencies inferred by

DecoSTAR. Overall, the precision and recall of adjacencies in the derived genomes

of SPP-DCJ do not fall below 97% and 98.7%, respectively. The plot on the top

left of Figure 4 visualizes both statistics for all samples as a function of the scale of

the phylogeny. As expected, the quality of reconstruction declines with increasing
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scale, i.e., numbers of evolutionary events.

Runtime analysis. In all experiments described above except those cases of the

first experiment where degenerate genomes were excessively large (surfeit 3), Gurobi

needed only few seconds to find an optimal solution for SPP-DCJ (cf. Figure 4

top right and bottom left). For the data sets with large degenerate genomes 3,

the program completed on average after 16 minutes, as indicated by bottom left

plot of Figure 4. This is impressive as SPP-DCJ must calculate the DCJ-indel

distance for 18 pairs of degenerate genomes simultaneously. Just as its predecessor,

the runtime of SPP-DCJ is only weakly affected by genome size. To prove this

point, we generated a series of data sets with genomes comprising 10,000 markers

and numbers of evolutionary events comparable to those described in Table 2 in the

Appendix. SPP-DCJ found optimal solutions in each run after 47 CPU seconds.

SPP-DCJ extends DING9 from pairwise distance calculations to the here in-

troduced small parsimony setting. It outperforms its predecessor for genomes with

many linear chromosomes. To illustrate this, we ran an experiment where we sim-

ulated the evolution of genomes with many linear chromosomes (between 60 and

260), close in nature to haplotype-resolved human genomes, or partially assem-

bled genomes. Our approach in handling optimal recombinations of indel-free paths

tremendously reduces the running time. In the experiment, we limited the running

time of the pairwise distance solver described in9 to two hours. While SPP-DCJ

completes all but one pairwise calculations within a few seconds, DING reaches the

runtime limit in six out of the eleven runs (cf. bottom right plot of Figure 4).

5. Conclusion

In this work we introduced a novel method for solving the SPP in the DCJ-indel

model, within an ancestral reconstruction workflow based on the seminal work of

Sankoff and El-Mabrouk31 and taking advantage of recent advances in the field of

phylogenomics15.

Our experiments on simulated data of moderate size provides a proof of concept

that SPP-DCJ can reconstruct efficiently accurate ancestral gene orders. Assessing

the performance of SPP-DCJ on data of larger scale is a natural avenue for further

work, as is a more thorough exploration of the impact of errors in reconciled gene

trees35. The joint reconstruction of ancestral gene orders and extant scaffolds using

DeCoSTAR has recently been applied with good results to a large-scale datasets

of mosquito genomes3. SPP-DCJ naturally lends itself to such an application as

degenerate extant gene orders can be considered by the method; the application of

SPP-DCJ to comparative scaffolding is thus a promising research direction. Last, the

SPP-DCJ algorithm can work with non-treelike phylogenies. This makes our method

applicable to population genomics studies, where introgression events introduce

reticulation nodes in the species phylogeny.
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Appendix A. Figures
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Appendix B. ILP

Our solution to SPP-DCJ makes use of the capped multi-relational diagram as in-

troduced in9, subsequently simply denoted by multi-relational diagram. The multi-

relational diagram represents a superposition of capped relational diagrams of all

possible derived genomes of degenerate genomes A and B. For each edge {A,B} of

a given phylogeny Γ and a given family assignment f , we construct multi-relational

diagram (V AB , EAB) = MR◦(A,B, f). Similarly to the relational diagram intro-

duced in Section 2, the multi-relational diagram is a composition of node sets

V AB = V A ∪ V B and edge sets EAB = EABadj ∪ EABext ∪ EABid .

• A node of the multi-relational diagram corresponds either to an extremity

of degenerate genomes A or B, or to an additional telomeric extremity re-

quired to match the number telomeres in both degenerate genomes. Here,

we take advantage of the following observation: Although the number of

telomeres of a degenerate genome can be odd, only an even subset thereof

can be simultaneously part of a derived genome. In other words, if a degen-

erate genome has x telomeres, at most 2bx2 c telomeres need counterparts

in the opposing degenerate genome. Let l = |
⋃
B ∩ T | − |

⋃
A ∩ T | be the

difference of telomere counts of both degenerate genomes. Then the set of

additional telomeres added to the relational diagram of A and B is defined

by sets TA = {ti ∈ T | 1 ≤ i ≤ 2b l2c} and TB = {ti ∈ T | 1 ≤ i ≤ 2b−l2 c}.
Observe that by construction, the size of both sets is even and at most one

of the two sets is non-empty. Then the node sets associated with degenerate

genomes A and B are defined by V A =
⋃
A ∪ TA and V B =

⋃
B ∪ TB .

• Likewise, the set of adjacency edges EABadj = EAadj ∪ EBadj comprises adja-

cencies of A and B as well as additional telomeric adjacencies between

nodes of TA or TB , i.e., EAadj = A ∪ {{t2i−1, t2i} | 1 ≤ i ≤ 2b l2c},
EBadj = B ∪ {{t2i−1, t2i} | 1 ≤ i ≤ 2b−l2 c}.

• Extremity edges connect marker extremities of degenerate genome A with

those of degenerate genome B according to family assignment f , but they

also connect all telomeric extremities of A with all telomeric extremities of

B, i.e., EABext = {{ε, ε′} ∈ V A × V B | ε, ε′ ∈ T or f(ε) = f(ε′) and e(ε) =

e(ε′)}.
• Indel edges EABid = EAid∪EBid connect extremities of markers whose families

are overrepresented in the respective genome, i.e., EAid = {{gt, gh} ⊆
⋃
A |

mA(gt) > mB(gt)}, and EBid = {{gt, gh} ⊆
⋃
B |mB(gt) > mA(gt)}.

Our method for solving Problem 3 is an extension of DING9 and is formulated

as an ILP (Algorithm 1). The key idea of the ILP is to simultaneously calculate

solutions to Problem 2 for each pair of genomes {A,B} ∈ E(Γ) and family as-

signment f while maintaining consistency in the selection of adjacencies of each

derived genome among all solutions. A solution is encoded as capped relational dia-

gram R◦(A
′, B′, f ′) and represents A-derived genome A′, B-derived genome B′ and
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Algorithm 1 ILP for solving Problem SPP-DCJ.

Objective:

Maximize

(1 − α− β)
∑

X∈A∪B
w(X) + α

 ∑
1≤i≤|V AB\T |,

AB∈E(Γ)

zAB
i −

1

2
·

∑
e∈EAB ,
AB∈E(Γ)

tAB
e −

∑
C∈CAB

AB∈E(Γ)

sC

− β
∑

v∈V AB∩T
AB∈E(Γ)

ov

For each multi-relational diagram MR◦(A,B, f), {A,B} ∈ E(Γ):

Constraints:

(C.01) ov= 1 ∀ v ∈ V AB \ T
(C.02)

∑
{u,v}∈EAB

adj

xuv= ov ∀ v ∈ V AB

∑
{u,v}∈EAB

id ∪E
AB
ext

xABuv = ov ∀ v ∈ V AB

(C.03) xABe = xABf ∀ e, f ∈ EABext such that e and f are siblings

(C.04) yABj + i(1− xvivj )≥ yABi ∀ {vi, vj} ∈ EABadj ,

yABj + i(1− xABvivj )≥ yABi ∀ {vi, vj} ∈ EABid ∪ EABext ,

(C.05) i(1− xABvivj )≥ yABi ∀ {vi, vj} ∈ EABid

(C.06) i · zABi ≤ yABi ∀ 1 ≤ i ≤ |V AB \ T |
(C.07) 1− xABuv ≥ rABv ∀ {u, v} ∈ EAid ,

xABu′v′≤ rABv′ ∀ {u′, v′} ∈ EBid
(C.08) rABv − rABu − (1− xABuv )≥ tABuv ∀ {u, v} ∈ EAB

(C.09)
∑

e∈EAB
adj (C)

xe +
∑

e∈EAB
id (C)

xABe + 1≤ sC ∀ C ∈ CAB

(C.10)
∑
d∈EA

id

d∩e 6=∅

xABd − tABe ≥ 0 ∀ e ∈ EAadj

tABe = 0 ∀ e ∈ EABid ∪ EABext

(C.11)
∑

v∈V A∩T

ov − 2aA= 0∑
v∈V B∩T

ov − 2aB= 0

Domains:

(D.01) xe∈ {0, 1} ∀ e ∈ EABadj

xABe ∈ {0, 1} ∀ e ∈ EABid ∪ EABext

(D.02) 0 ≤ yABi ≤ i ∀ 1 ≤ i ≤ |V AB |
(D.03) zABi ∈ {0, 1} ∀ 1 ≤ i ≤ |V AB \ T |
(D.04) rABv ∈ {0, 1} ∀ v ∈ V AB

(D.05) tABe ∈ {0, 1}∈ {0, 1} ∀ e ∈ EAB

(D.06) ov∈ {0, 1} ∀ v ∈ V AB

(D.07) sC∈ {0, 1} ∀ C ∈ CAB

(D.07) aA, aB∈ N



July 16, 2021 11:53 WSPC/INSTRUCTION FILE output

20 Daniel Doerr and Cedric Chauve

f -derived {A,B}-resolved family assignment f ′.

Rather than minimizing the sum of objectives specified in Problem 2, the al-

gorithm solves the inverse maximization problem. Note that n, i.e., the number of

non-telomeric markers that are shared between each pair of derived genomes A′, B′,

is fixed and amounts to
1

2

∑
ε∈A

min (mA(ε),mB(ε)) =
1

2

∑
ε∈B

min (mA(ε),mB(ε))

and thus requires no optimization. Similarly, each quadruple of telomeresd may

increase the number of cycles by at most 1 while simultaneously increasing n′ by 1

(cf. Eq. 1): the number of telomeres used in a solution does not impact the DCJ-

indel distance. The objective of Algorithm 1 translates the linear combination of

Problem 3 into weighted sums over binary variables zABi , tABe , sC , and ov that count

indel-free cycles, transition edges, circular singletons, and telomeric extremities,

respectively. Here, CAB represents the set of all candidates of circular singletons.

The choice of adjacencies across all relational diagrams that make use of the

same genome is synchronized by using the same variable for each of its adjacencies

(cf. D.01). Conversely, indel and extremity edges depend on the particular pair-

wise comparison. Also, variables involved in identifying/counting indel-free cycles

(cf. D.02, D.03), indels (cf. D.04), and transition edges (cf. D.05) are not syn-

chronized, and therefore are optimized independently. Note the capped relational

diagram does not permit components with only telomeric extremities. Thus allows

us to omit telomeric extremities from the process of counting indel-free cycles.

As alluded to before, the set of extremities in a genome derived from a degenerate

genome may vary, leading to different surfeits. More precisely, the set of telomeric

extremities is mutable while, per definition, each derived genome shares the same set

of non-telomeric extremities. To this end, our ILP makes use of additional variables

that indicate the presence of an extremity in a derived genome that is part of the

solution (cf. D.06). Components corresponding to circular singletons are counted

by binary variables specified in D.07. Last, we also count the number of linear

chromosomes in derived genomes of the solution (cf. D.08).

Valid solutions to Problem 2 for each pair of degenerate genomes {A,B} ∈ E(Γ)

are guaranteed by constraints C.01-09. The presence of each node associated with

a non-telomeric extremity in capped relational diagram R◦(A
′, B′, f ′) is ensured by

setting the corresponding variable ov for each v in V AB to one. Constraints C.02

enforce that each connected component in R◦(A
′, B′, f ′) represents an alternating

cycle, where each adjacency edge is followed by either an extremity or indel edge.

The next constraint, C.03, implements the definition of a family assignment which

specifies that head and tail of marker in {A,B}-resolved assignment f ′ must belong

to the same family. Here, we denote by sibling a pair of edges {gt, ht}, {gh, hh} ⊆
EABadj , such that {gt, gh}, {ht, hh} ∈ M.

dTelomeres in a capped relational diagram appear in multiples of four
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Variables yAB label each cycle in relational diagram R◦(A
′, B′, f ′) by a number

(cf. C.04). This number will be zero, if the cycle contains one or more indel edges

(cf. C.05). Otherwise, the number will correspond to the smallest index of any node

in the cycle (cf. C.06). Constraints C.07 label runs of genome A as zero and runs

of genome B as one. Constraint C.08 enforces that the indicator of a transition

edge tABuv corresponding to edge {u, v} ∈ EAB is set to one if (i) the edge is part of

relational diagram R◦(A
′, B′, f ′) and (ii) its incident nodes have unequal run labels.

Constraint C.09 sets the indicator sC for a connected component C to one if C

is a circular singleton. This entails the prerequisite that the set of all candidates of

circular singletons CAB must be known. The construction of this set is explained

further below.

Constraints C.10 and C.11 are optional in the sense that they are not required to

construct a valid solution to SPP-DCJ. However, these constraints reduce the search

and/or solution space, which helps the ILP solver in reducing the computation time.

Constraint C.10 limits the choice of transition edge between to neighboring indel

runs to an adjacency edge of genome A. Last, constraints C.11 let the solver know

that valid genomes contain an even number of telomeric extremities.

Appendix C. Simulation Details

Table 1. Data set 1 : Total numbers of evolutionary events produced by ZOMBI run on tree of
10 extant species with parameter settings: genome size: 1000, duplication: 2, dupl. extension: 0.5,

loss: 2, loss extension: 0.5, inversion: 2, inversion extension: 0.05, transposition: 2, transposition

extension: 0.05, origination: 0.

Tree
scale

Dup.
events

Dup.
genes

Loss
events

Lost
genes

Inver-
sions

Transpo-
sitions

1 4 10 8 14 4 4

2 9 16 13 25 16 8

3 5 15 17 35 13 12

4 26 47 28 60 18 15

5 29 51 35 72 18 28

6 33 80 35 70 27 26

7 32 69 27 57 32 30

8 50 89 34 63 47 34

9 40 90 48 102 48 45

10 55 107 52 117 55 44
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Table 2. Data set 2 : Total numbers of evolutionary events produced by ZOMBI run on tree of

10 extant species with parameter settings: genome size: 1000, duplication: 2, dupl. extension: 0.8,

loss: 2, loss extension: 0.8, inversion: 2, inversion extension: 0.5, transposition: 2, transposition
extension: 0.5, origination: 0.

Tree
scale

Dup.
events

Dup.
genes

Loss
events

Lost
genes

Inver-
sions

Transpo-
sitions

1 3 5 4 4 6 3

2 4 5 9 12 7 10

3 15 18 17 22 11 22

4 21 29 17 24 17 21

5 24 33 30 37 22 18

6 35 48 39 44 23 37

7 52 67 26 30 40 42

8 39 46 40 51 37 39

9 45 60 45 59 53 38

10 43 57 47 63 53 54


